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FLOW OF A VISCOUS LIQUID FILM ON THE SURFACE 

OF A ROTATING DISK 

G. M. Sisoev, A. F. Tal'drik, 
and V. Ya. Shkadov 

UDC 532.516 

Results are presented from numerical calculations of steady-state nxisymmetric 
flow of a fil~ of viscous incompressible liquid over the surface of a plane ro- 
tating disk. 

Film flow of a liquid over the surface of a rotating disk is found in many technological 
processes, the calculation of which requires knowledge of the hydrodynamic characteristics 
of such a flow. A number of theoretical and experimental studies have been dedicated to this 
question [i-5]. Dorfman [i] presented results of calculations by the difference method for 
the case of uniform initial velocity component profiles, [2-4] considered asymptotic solu- 
tions for relatively thin films, while [5] numerically determined a solution of special form. 
The present study will use the colocation method of [3], which allows calculations for a wide 
range of parameter values. 

Let a viscous incompressible liquid be supplied near the axis of rotation of the disk at 
a constant volume flow rate Q. In analogy to [3], the velocity components Ur, u@, u z in a 
fixed cylindrical coordinate system r, @, z fixed to the center of rotation of the disk are 
represented in the form 

ur = ~rS~u, u0 = ~ r ( l @ 5 ~ v ) ,  uz = mH052w. 

The q u a n t i t y  6 appear ing  in ~ i s  the  t h i c k n e s s  of  the  boundary i a y e r  which develops  near  
an i n f i n i t e l y  l a r g e  d i sk  r o t a t i n g  in an i n f i n i t e  l i q u i d  volume [6] .  

Without  c o n s i d e r i n g  s u r f a c e  t e n s i o n  the  system of  equa t i ons  and boundary c o n d i t i o n s  des-  
c r i b i n g  steady-state axisymmetric flow of the film, to the accuracy of terms of the order 
(H0/r) 2, has the form [3]: 

Ou aw 
- - . +  2 u +  - 0, ( 1 )  

Ox ay 

Ou Ou ) 
ay ~a~--~u + l + 26~v - ~ u --~x + w --~y + u2 - -  v~ = o ,  ( 2 )  

_ _ _  ( av w av ) O~v 252u--5 ~ u + + 2uv = O, ( 3 )  
W 
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Fig. i Fig. 2 
Fig. i. Thickness and mean radial velocity vs radius: i, 2)6 = 
2.504; U = 0.1 sin (~y/2), V = sin(~y/2); 3, 4) 6 = 3.107, U = 
y-y2/2, V = 0; l, 3) thickness; 2, 4) mean radial velocity; num- 
ber of flow lines N = i0. 

Fig. 2. Development of radial velocity profile at 6 = 3.107, 
U = y - y2/2, V = 0: i) x = 0: 2) 0.00564; 3) 0.016~; 4) 0.01564; 
5) 0.0264; 6)0.02564; 7) 0.02964; number of flow lines N = i0. 

Oh Ou Ov y=h(x ) :u - -=w,  --- = 0 ,  (4) 
Ox Oy Oy 

9 = 0 :  u = v = w = 0 ,  (5) 

where  h i s  t h e  f i l m  t h i c k n e s s ;  x = l n ( r / R ) ,  y = z/H o. Hera  Eq. (1 )  i s  t h e  c o n t i n u i t y  equa -  
t i o n ;  gqs. (2), (3) are the equations of motion for the radial and azimuthal velocity com- 
ponents, respectively; Eq. (4) expresses the kinematic condition and the equality to zero 

of tangent stresses in two directions on the free surface; Eq, (5) expresses the adhesion 
and impermeability conditions on the disk surface. 

The spreading of the film is considered as a Cauchy problem with initial conditions 
as formulated below for x = 0. 

For a numerical solution we introduce flow lines y = hn(x) and values of the velocity 
components thereon Un(X) = u(x, hn(x)), Vn(X) = v(x, hn(x)), n = i, 2, ..., N, while h N ~ h. 
For the volume flow rates qn(X), defined by the expressions 

q n ( x ) ~  udy, n =  1, 2 . . . .  N, ho~O, (6)  

from continuity equation (i) and conditions of nonflow across flow lines, analogous to the 
kinetic condition of Eq. (4), it follows that 

dq~ + 2 q ~  : 0, n ~  1, 2 . . . .  , N. (7)  
dx 

Us ing  t h e  t r a p e z o i d  e x p r e s s i o n  o f  [7]  t o  c a l c u l a t e  t h e  i n t e g r a l s  o f  Eq. ( 6 ) ,  f rom Eq. (7 )  
we obtain 

d--~ = dx u . + u . _ l  k dx + d----U- ' (8) 

n = 1, 2 . . . . .  N, u0~-0. 
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The equations of motion written for the flow lines give 

- -  = v .  v,~ + + + 1 - -  u,~, 

--= , n = l ,  2 . . . . .  N. 
dx Ou,~ O~ u=~.~ 

To calculate the second derivatives appearing on the right side of Eq. (9) we use the 
tau-approximation of [8] employing mixed Chebyshev polynomials of the first sort ~k(D) de- 
fined by the expressions [9] 

qz I = t ,  qD 2 = 2~] - -  1, qDh ~ 2qO2qD~-i - -  q~k-~, k ~- 3, 4 . . . . .  N ~ 2. 

Then for the velocity components, for example u, we construct the approximating function 
N+2 

uN (D = ~ ah~ (y/h), 

t h e  e x p a n s i o n  c o e f f i c i e n t s  o f  w h i c h ,  a k ,  k = 1 ,  2 . . . . .  N + 2 ,  a r e  s o l u t i o n s  o f  a s y s t e m  o f  
l i n e a r  a l g e b r a i c  e q u a t i o n s  

N§ 
X ahq:~ (h,Jh) =: an, n = 1, 2 . . . . .  N ,  ( 1 0 )  

N+2 N+2 
ah~h(O) = O, X a~q~i(1) = 0, ( 1 1 )  

k ~ l  ~ 1  

where Eq. (i0) is the condition of equality of the function u N to the values of the velocity 
components u on the flow lines, while Eq. (ii) is an approximation of boundary conditions 
on the disk and the film surface. The expressions for the second derivatives of the function 
u on the flow lines have the form 

. ;(, ~ b ~  (h#h), n = 1, 2 . . . . .  N, 

where 

N+2 N~-2 

b~ = - g -  ~ ( !  - -  1 ) % ,  b~ - -  ( i  - -  I )  [ ( i  - -  1 )~ - -  
z ,  

�9 i=3 ]=k+2 
I-- odd ]+k-- even 

- -  (k - -  1) ~] a~, k --= 2, 3 . . . . .  N.  

To Eqs. (8), (9) we add the initial conditions 

h .  (0) ~ n/N.  u~ (0) = U (h~), v~ (0) = V (h~), n = 1, 2 . . . . .  N ,  

where U(y), V(y) are specified functions. The value of the film thickness at x = 0 is con- 
sidered as a characteristic scale. 

Integration of Eqs. (8), (9) was performed by a second-order accuracy Adams-Beshfort 
method [8]. The quantization error along x can be neglected because of the small size of the 
integration step, specified by the condition for stability of the method. The accuracy of 
the calculation is determined by the number of flow lines N and the complexity of the velo- 
city component profiles. Equality to zero of the coefficients a k for higher polynomials 
was monitored during the calculations. 

It follows from Eqs. (i), (4), and the axisymmetric nature of the flow that 

a Qv 

0 

At low values of the parameter d the problem of Eqs. (1)-(5) without initial conditions 
has a solution, the main terms of the expansion of which in terms of 6 4 have the form [3] 

1 2, 6 2 ( 1  3 2 s I ) h~ = ~ ~ ,  u~ == h~y - -  .-~- y v~ = --~ h~y - -  . -~  h~ y - -  - - f f  y ~ �9 ( 1 2 )  
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Asymptotic solutions of higher order are presented in [3, 4]. 

Figure i shows the dependence of h and the mean radial velocity u m = q/h relative to the 
corresponding values ha, uc~ of Eq. (12). After a formation period x 0 the solution takes 
on the form of Eq. (12). 

During the readjustment process the velocity profiles have a complex form, an example of 
which is shown in Fig. 2. 

The length of the formation segment x 0 and the degree to which the solution thereon dif- 
fers from the asymptotic solution of Eq. (12) depends on the parameter 6 the volume flow 
rate q(0), and the initial velocity component profiles. In studying the dependence of x 0 on 

and q(0) we considered the case U = 3q(0) (y - y2/2), V = 0. For the fixed value q(0) = 
1/3 the length of the formation segment x 0 = 0.28, 0.90, 1.42, 2.52 at 6 = 0.669, 1.000, 
1.442, 3.107, respectively; for 6 = I for initial flow rates q(0) = 0.I, 2.0, 4.0 values x 0 = 
0.30, 1.44, 1.80, 2.15 were obtained. The condition l(h - ha)/h a < 0.02 was used as a cri- 
terion for choosing x 0. 

The initial velocity component profiles have a greater effect on the form of the solution 
on the formation segment than on the value of x 0. For example, for the case ~ = i, q(0) = 
1/3, V = 0 at U = y - y2/2 the film thickness decreases monotonically with increase in x, 
while at U = 2.5 (y - y2/2)2 the thickness curve shows local minima and maxima. The effect 
of the initial azimuthal velocity profile was considered for the case 6 = i, q(0) = i, U = 
~sin(~y/2)/2. For u = 0 the film thickness curve has a local maximum, while at V = 10U a 
minimum exists along with the maximum. 

Thus, calculation results show that for films of relatively large thickness the radial 
velocity profile differs from parabolic over some initial formation segment, the length of 
which is comparable to the characteristic radius of the disk. The proposed method permits 
calculation of flows of such films. 

NOTATION 

Q, volume flow rate; m, angular velocity of disk rotation; ~, kinematic viscosit~_~ 
liquid; H0, characteristic film thickness; R, minimum radius of flow region; 6 = H0/~/v, 
parameter; r, 8, z, and Ur, ue, Uz, cylindrical coordinate system and liquid velocity com- 
ponents; x0, dimensionless length of asymptotic solution formation segment. 
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